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a b s t r a c t

We present two algorithms for accurate beam-frame simulations of the dynamical friction
force on a non-relativistic ion moving for a short time in a low-density electron distribu-
tion, in the presence of arbitrary external fields. A special-purpose 4th-order predictor–cor-
rector (‘‘Hermite”) algorithm, taken from the astrophysical dynamics community, has been
generalized to work with charged particles in the presence of a constant magnetic field. An
alternative algorithm uses operator splitting techniques to solve binary Coulomb collisions
(BCC) in the presence of arbitrary external fields. We discuss the close mathematical rela-
tionship between the Hermite and BCC algorithms, and their order of convergence. We dis-
cuss the parallel efficiency of the BCC algorithm and use it in the parallel simulation
framework VORPAL to study problems in a parameter regime relevant to the electron cool-
ing section for the proposed luminosity upgrade of the Relativistic Heavy Ion Collider. In
particular, we simulate the field-free case to show how finite time effects strongly modify
the traditional Coulomb logarithm, resulting in a significant reduction of the dynamical
friction force as calculated by standard theoretical formulas. We show that diffusive
dynamics can be correctly simulated, but that it must be artificially suppressed in order
to accurately obtain the friction force. We discuss the proposed use of a helical undulator
magnet to focus the electron beam and inhibit electron–ion recombination, showing that
this device reduces the friction force.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Novel electron-hadron collider concepts are a high priority for the long-term plans of the international nuclear physics
community. Orders of magnitude higher luminosity will be required for the relativistic ion beams in such particle acceler-
ators. Higher luminosity can only be achieved by some dissipative mechanism that reduces the effective phase space volume
occupied by the ion beam. A promising technique for this purpose, known as electron cooling, propagates an overlapping
electron beam with the same velocity as the ions, for a small fraction of the collider circumference, allowing the ions to give
up some of their thermal kinetic energy via Coulomb collisions. This very brief and subtle interaction provides weak damping
of the effective ion phase space volume (i.e. cooling), which accumulates turn by turn to successfully combat a variety of
mechanisms that increase this volume.
. All rights reserved.
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Electron cooling has been used successfully at many low-energy ion accelerator facilities around the world, using non-
relativistic DC electron beams, in a strong solenoidal magnetic field [21,23,26]. This is referred to as ‘‘magnetized cooling,”
because the electrons are strongly coupled to the magnetic field lines, which greatly increases the friction force by suppress-
ing the transverse electron temperature. At higher energies, much stronger solenoidal fields are required to magnetize the
electrons, which eventually becomes impractical. It has recently been demonstrated [24] that electron cooling can work with
a moderately relativistic electron beam, in a solenoidal field that is sufficiently strong to focus the electron beam but not
result in magnetized electron dynamics. This is now referred to as ‘‘unmagnetized cooling”.

The electron cooler for the proposed luminosity upgrade of RHIC [4,13] represents a significant design challenge due to
the high energy of the ion beam. While lower energy ion beams can be cooled by continuous electron beams, the 55 MeV
electron beam needed by RHIC must be a bunched beam, with consequently higher temperature electrons. In addition
the long ion bunch length implies that only a small portion of the beam will overlap the electrons during one interaction.
The requirements for an electron cooler are tight enough that, if cooling estimates are off by a factor of two, the cooling will
not be sufficient to combat emittance growth from intra-beam scattering. Thus, careful estimates of dynamical friction from
numerical simulations are critical for the proposed RHIC electron cooler.

We present two algorithms for non-relativistic, electrostatic simulations of the dynamical friction force exerted by a dis-
tribution of electrons on an individual ion. In particular, we consider the parameter regime of the proposed RHIC high-energy
cooler. The original cooler design adopted the magnetized cooling approach. We provide details on the ‘‘Hermite” algorithm
used in this case, a 4th-order predictor–corrector integration scheme, originally only valid for the field-free case, but general-
ized to work with charged particles in a magnetic field that is constant in both time and space. Simulations using the Hermite
algorithm have previously [6,14,15] resolved discrepancies between alternate theoretical models for the magnetized friction
force.

A more recent RHIC cooler design replaces the solenoid with a helical undulator magnet to provide transverse focusing of
the electron beam and, by driving small-amplitude oscillations in the electron trajectories, reduce the ion-electron recom-
bination rate. The undulator-driven electron oscillations reduce the friction force that would occur in the absence of external
fields. When the helical undulator field is Lorentz-transformed into the beam-frame, one obtains rapidly-varying electric and
magnetic fields, which cannot be accurately modeled with the Hermite algorithm. For this case we have developed an alter-
nate algorithm, which uses an operator-splitting approach to combine a semi-analytic model for binary Coulomb collisions
(BCC) between electron/ion pairs with a modified Boris push [5] to incorporate arbitrary external fields.

We present both algorithms in detail, showing that they are more closely related than one would initially expect, and we
prove their order of convergence. Both algorithms have been implemented in the parallel simulation framework VORPAL
[25]. Simulation results from using the BCC algorithm are presented here, both for the field-free case and in the presence
of a helical undulator magnet.
1.1. Review of the friction force and the Coulomb logarithm

Calculation of the dynamical friction force in an ‘‘ideal” or ‘‘weakly coupled” electron plasma dates back to the work of
Chandrasekhar in 1942 [9] and Trubnikov in 1965 [28]. The calculation can now be found in texts on basic plasma physics
(e.g. Ref. [8]). For plasma applications, researchers typically assume a scalar temperature for the electrons. Our interest here
is in relativistic electron beams, which in the beam-frame have a longitudinal temperature that is much lower than the
transverse temperature. Derbenev [10] considers such complications, and also discusses the relationship between the fric-
tion force and diffusive dynamics. Budker [7] first recognized that the friction force provided a mechanism for cooling heavy
ion beams by co-propagating them for a finite distance with lower temperature electron beams.

Finite time effects in a real electron cooling system can severely constrain the minimum and maximum impact param-
eters that are used in the standard Coulomb logarithm, leading to significantly weaker friction forces than are predicted by
the usual theory. These finite time effects are calculated in later sections, but it is helpful to first review the standard der-
ivation and to consider details regarding the approximate treatment of small impact parameters. This review follows the on-
line text of Callen [8].

The friction force calculation assumes that binary Coulomb collisions dominate and that 3-body or higher n-body col-
lisions can be ignored. This assumption is, essentially, the defining characteristic of an ideal or weakly-coupled plasma. This
approximation is central to the simulations and analysis in the present work and, in particular, to the numerical trick (de-
scribed below) of using correlated electron/positron pairs to suppress the diffusive motion of an ion. At the end of Appen-
dix A, arguments based on Poisson statistics are used to clarify conditions under which this assumption is valid. In this
appendix, a similar analysis is used to calculate the cutoff impact parameter which can be reasonably sampled in a finite
time, called qc.

The standard friction force calculation proceeds by integrating the Coulomb force on an electron as it follows an assumed
straight-line trajectory past an ion. For this perturbative calculation, the impact parameter and the distance of closest ap-
proach are identical. By conservation of momentum, the force on the ion is equal and opposite. One then must integrate over
all impact parameters, but this diverges logarithmically for both large and small impact parameters. To resolve this math-
ematical difficulty, one chooses physically reasonable values for qmin and qmax, and limits the integration to this range. The
standard Coulomb logarithm is defined to be the log of the ratio of these impact parameters:
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K0 ¼
Z qmax

qmin

dq
q
¼ ln

qmax

qmin

� �
: ð1Þ
The analysis is accurate in the limit that qmax � qmin, such that K0 � 1, with errors of order 1=K0.
The divergence at large impact parameter is due to the long-range nature of the Coulomb force and the assumption that

every electron/ion collision has an arbitrarily long time interval to complete. For interaction times s long compared to the
plasma period, one has sxpe � 2p, where xpe ¼ ðnee2=�0meÞ1=2 is the electron plasma frequency, ne the electron density, e
and me are the electron charge and mass, �0 is the permittivity of free space, and we are using MKS units. In this limit, for ion
velocities vion less than the (assumed isotropic) electron thermal velocity D, the electrons have time to form a higher-density
cloud around the ion. At distances larger than the Debye length, kD ¼ D=xpe, the ion charge is completely shielded and elec-
trons do not scatter. Hence, one typically chooses qmax ¼ kD. The case of ion velocities much larger than the thermal electron
velocity is more complicated [29,30].

For the electron cooling parameters proposed for RHIC, we must work in the opposite limit, where xpes < 2p. In this lim-
it, there is essentially no shielding of the ion charge and qmax is limited only by some relatively large length scale, such as the
beam radius. However, in this limit one must explicitly account for the finite interaction time, which leads to a modified form
of the Coulomb logarithm and no singularities. These finite time effects are discussed in Section 7, resulting in the modified
Coulomb logarithm in Eq. (37).

The impact parameter for 90� scattering is given by
qminðvrelÞ ¼
jkj

mejvrelj2
; ð2Þ
where vrel ¼ vion � ve is the relative velocity vector, vion and ve are the ion and electron velocities, respectively, and
k ¼ Ze2=ð4p�0Þ, where Z is the ion charge number. Our convention is to use k > 0 for attracting particles and k < 0 for repelling
particles. For collisions between particles of similar mass, we would replace the electron mass me by the reduced mass. The
standard perturbative calculation of friction force breaks down at small impact parameters, and it is common to ignore all
collisions with impact parameter less than qmin. A more careful consideration of small impact parameter collisions will result
in a modification of the Coulomb logarithm. We will see that it is important to distinguish between qmin, a length defined by
the particle’s mass, charge, and relative velocity, and qc, the smallest impact parameter that occurs.

Above, we have defined qmin to be a function of the relative velocity between a single ion and a single electron. It would
then follow that the Coulomb logarithm defined above in Eq. (1) is also a function of this particular relative velocity. How-
ever, when a particular value of qmin is specified in the literature, most often the author has assumed an isotropic thermal
plasma and replaced vrel with the rms electron velocity D.

The electron distribution most often considered by the electron cooling community is an accelerated beam in the co-mov-
ing reference frame, for which the transverse rms electron velocities (i.e. Dx ¼ Dy) are much larger than the longitudinal rms
velocity Dz. In such cases, one can integrate over the beam-frame electron velocity distribution f ðveÞ to produce an average
minimum impact parameter:
qavg
min ¼

Z 1

�1
qminðvrelÞf ðveÞd3ve; ð3Þ
or else replace vrel with some weighted average of the three Da values. In some cases, the typical ion velocity in the co-prop-
agating ion beam may be large compared to some or all of the Da, in which case the ion velocity in vrel is treated carefully in
the integral above, or vrel is sometimes replaced with vion.

When a particular value is specified for the Coulomb logarithm K0 in the literature, the authors are often using Eq. (1),
with qmin defined in one of the various ways just described, although different segments of the plasma physics community
have established various conventions for approximately calculating K0. Alternatively, one can use the explicit form from Eq.
(2) in Eq. (1), and then use this KðvrelÞ inside an integral over the electron distribution.

The ensemble average friction force on an ion moving with velocity vion through a cold electron distribution is [8]
Fk ¼ 2pnemevion

Z qmax

qc

qdvkdq; ð4Þ
where dvk is the change in the ion velocity parallel to vion induced by a single collision. The parameter qc is the lower limit or
‘‘cutoff” on impact parameter. which can be set to 0 to include all small impact parameter collisions.

As the impact parameter decreases, collisions corresponding to this impact parameter become less frequent. Hence, in
any finite interaction time, with finite electron density, there is some impact parameter qc, below which the number of col-
lisions is too small to reasonably sample the 4psr of interaction angles, so such impact parameters do not contribute to the
friction force. This is explained in detail in Appendix A, where we calculate qc. The parameter qc is distinct from qmin, and it is
important not to confuse the two.

To obtain the friction force in a warm electron plasma, one replaces vion with vrel and integrates over the electron distri-
bution function, as is done below in Eq. (8). We can obtain an exact expression for dvk using the standard Rutherford scatter-
ing formula for the scattering angle / [8,20] (see also Appendix B),
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¼ �qmin

q
; ð5Þ
with the sign determined by the sign of k (attracting vs. repelling charges), and qmin given by Eq. (2). The only assumption
made in Eq. (5) is that the interaction time is infinite. Since dvk ¼j vrel j ðcos /� 1Þ, we find
dvk ¼ �
2jvreljq2

min

q2 þ q2
min

¼ � 2k2

m2
e jvrelj3

1
q2 þ q2

min

; ð6Þ
and integrating from qc to qmax gives the total friction force
Fk ¼ �
4pnek2vrel

mejvrelj3
1
2

ln
q2

max þ q2
min

q2
min þ q2

c

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K1

: ð7Þ
When qc ¼ 0 and qmin � qmax, K1 is very close to the usual Coulomb logarithm K0 in Eq. (1). For qc ¼ 0 and K0 > 2, the rel-
ative error between K1 and K0 is less than 0.5%. But for a finite value of qc, K0 and K1 will differ.

Somewhat surprisingly, in a perturbative setting involving only weak collisions (q� qmin) we can derive Eq. (7) where K0

replaces K1 [8]. For a weak collision, dvk is given by Eq. (6) with the denominator q2 þ q2
min replaced by q2. The integral in Eq.

(4) now diverges for small impact parameters, but if we begin the integration from qmin we obtain Eq. (7) with K1 replaced by
K0.

The standard Coulomb logarithm K0 represents an efficient way to include the contribution from all impact parameters,
without needing any special treatment of strong collisions. A conceptual problem with the perturbative derivation is that it
appears to ignore all collisions with impact parameter less than qmin. In fact, an overestimation of the contributions from
small impact parameters q > qmin almost exactly makes up for the missing collisions with q < qmin, as demonstrated graph-
ically in Fig. 1. The two areas differ by a relative error which is equal to that between K0 and K1, less than 0.5% for qc ¼ 0 and
K0 > 2.

When qc > 0, the perturbative treatment would replace qmin by qc in the Coulomb logarithm, but from Eq. (7) we should
replace qmin by ðq2

min þ q2
c Þ

1=2. However, it is confusing to think of this process as ‘‘replacing qmin”, because qmin has a specific
definition, Eq. (2). Instead, we recommend keeping the roles of qmin and qc separate, and using the modified Coulomb log-
arithm K1.

We now calculate the total friction force on an ion in a warm electron plasma by integrating Eq. (7) over the 3D electron
velocity distribution f ðveÞ:
Fk ¼ �
4pnek2

me

Z 1

�1
KðvrelÞ

vrel

jvrelj3
f ðveÞd3ve: ð8Þ
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1. Exact calculation of the friction force over impact parameter compared to the weak approximation which results in the Coulomb logarithm.
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Here K can be either of the Coulomb logs given in Eq. (1) or (7) depending on the desired accuracy. The velocity distribution
is usually assumed to be Gaussian, with different RMS values in each dimension, as given by Eq. (A.2) below. Eq. (8) must
generally be evaluated numerically, as is done for example in the BETACOOL code [27].

1.2. Distinction between the friction force and electron cooling

It is important to make a distinction between simulations of the friction force on individual ions, which is the subject of
the present work, and electron cooling simulations, which combine simplified models of the friction force with a variety of
competing effects to study equilibration of the ion beam phase space over many turns around the storage ring or collider. The
BETACOOL code [27] is one tool that can be used to estimate cooling rates over many turns. First principles simulation of the
dynamical friction on individual ions provides improved physical understanding and can be used to improve the friction
force models in a code like BETACOOL (see e.g. [15]).

In passing through the electron cooling section, the velocity kick on an ion can be separated into a diffusive component
plus a dynamical friction component (both to be discussed in Section 6). After a single pass the diffusive kick can equal or
even exceed the dynamical friction kick. Because the friction force accumulates linearly in time, while diffusive effects accu-
mulate as the square root of the interaction time, the effects of friction will dominate over diffusion during the roughly 100
million passes through the cooling section (assuming a characteristic cooling time of 30 min). In fact, ions execute betatron
(transverse) and synchrotron (longitudinal) oscillations as they travel the circumference of the RHIC collider ring, returning
to the electron cooling section each time with a different phase in each dimension and, hence, different velocities with re-
spect to the co-propagating electron beam. These details of the ion dynamics do not change the conclusion that friction will
dominate diffusion over 100 million turns. What happens in BETACOOL is that the friction force, which is a function of the
velocity components for a single ion, is dynamically averaged for the betatron and synchrotron phases of individual ions, and
the effective cooling rate for an ion beam then depends also on an average over the (evolving) ion velocity distribution. In the
VORPAL simulations presented here, we partially suppress the diffusive dynamics of ions making a single pass through the
cooling section, in order to more accurately extract the friction force.

Similar considerations apply to our calculation of qc. The statistical arguments presented in Appendix A show that very
small impact parameters cannot be adequately sampled in a finite time, for a finite electron density, so the Coulomb loga-
rithm K1 of Eq. (7) should be used, which gives a reduction in the friction force compared to that obtained using the standard
Coulomb logarithm K0. It is possible that, over millions of turns, these small impact parameters are appropriately sampled
and the full friction force is recovered on average. However, the ion oscillations discussed in the previous paragraph, com-
bined with a variety of nonlinear forces, and sources of random noise like intra-beam scattering, may be sufficient to prevent
small impact parameter collisions on subsequent turns from accumulating in a coherent manner. This remains an open ques-
tion, to be addressed in future work.

1.3. Organization of the paper

The remainder of this paper is organized as follows: Section 2 contains a description of the physical problem, and in Sec-
tions 3–5 we give details on two numerical algorithms to solve the problem, and discuss parallelization efficiency. In Section
6 we give the parameters for the RHIC II cooler, and show that numerical models successfully simulate the diffusion in this
device with zero fields. We also discuss the effect of the smallest impact parameter that can be resolved, qc. In Section 7 we
consider finite-time effects that arise because collisions between electrons and ions do not occur over an infinite time inter-
val, as is often assumed by the theory. We also consider the closely related problem of how the simulation box size affects
the maximum impact parameter. In Section 8 we calculate numerically how the friction changes when an external undulator
magnet is present, with conclusions found in Section 9. Appendix A calculates the statistical limitation on the cutoff impact
parameter qc due to finite time effects, and Appendices B and C details on the binary Coulomb collision (BCC) and Hermite
algorithms.
2. Problem description

Here we work in the beam-frame, where the motion of all particles is by assumption non-relativistic. We consider the
interaction of a large number of electrons (Ne) with a small number of ions (Nion). We assume the ion density is low, and
neglect ion-ion interactions. We also neglect electron–electron interactions, although we retain the ability to ‘‘turn on” this
effect in VORPAL by interaction through electrostatic PIC. By neglecting these interactions we do not have to calculate the
force between every particle pair, and for N ion fixed the computation time scales linearly with Ne rather than quadratically.

It is convenient to represent the positions of all particles by a single set of position vectors xi. The ions are represented by
indices i ¼ 0;1; . . . ;Nion � 1 while the electrons are i ¼ Nion;Nion þ 1; . . . ;Nion þ Ne � 1. We introduce a characteristic function
vi that picks out which type of particle we have
vi �
1 if i < Nion;

0 if i P Nion:

�
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We also want the ability to have more than two species of particles in our model. To do this we just modify the characteristic
function, a particle species interacts with all others that differ in characteristic function value.

Let the mass of the electron and ion species be me and m ion with charge�e and Ze. The equations of motion for the system
of Ne þ Nion particles is given by the sum of the Lorentz force and Coulomb force due to particle interaction:
mi€xi ¼ qiðEþ vi � BÞ �
Xvj 6¼vi

j

FðxijÞ; ð9Þ
where the fields E and B are specified external fields, and
xij ¼ xi � xj; ð10Þ

FðxÞ ¼ kx

jxj3
and k ¼ Ze2

4p�0
: ð11Þ
Note that some authors define xij ¼ xj � xi, which flips the sign of the sum in Eq. (9). The form of k assumes a collision be-
tween an ion of charge Ze and an electron of charge �e. The Coulomb force between such opposite-charge particles is attrac-
tive (k > 0), which corresponds to the gravitational force between astrophysical objects. In the general case we can have
collisions between like-charge particles, which will give k < 0. We need to be sure our algorithm can handle this case.

Astrophysicists often introduce a ‘‘softening parameter” as a cutoff for the magnitude of the force. If the charge is spread
uniformly in a sphere of radius rc, we would use
FðxÞ ¼ kx

ðjxj2 þ r2
c Þ

3=2 : ð12Þ
The binary Coulomb collision algorithm described below uses an exact 2-body solver, in which case we must have rc ¼ 0. In
the Hermite algorithm, the softening parameter can be used to prevent inaccuracies from very close collisions, as well as
artificially limiting the impact parameter (to be discussed in the next section).

3. The Hermite algorithm

The Hermite algorithm has been adapted from one used by astrophysicists to solve n-body problems [22]. We have mod-
ified the algorithm to handle an external magnetic field, but this field must be constant in space and time. This algorithm has
been used in the case of a constant solenoidal field to investigate ‘‘magnetized” cooling [6,14,15]. The Hermite algorithm orig-
inates from the idea that by taking a total derivative with respect to time of our equations of motion, we obtain an exact for-
mula for the derivative of acceleration, called the jerk, Ji ¼ _ai. We can calculate the acceleration and jerk of the ith particle as
miai ¼ qiðEþ vi � BÞ �
Xvj 6¼vi

j

FðxijÞ; ð13Þ

miJi ¼ qiai � B�
Xvj 6¼vi

j

Gðxij;vijÞ; ð14Þ
where xij ¼ xi � xj, vij ¼ vi � vj, and G is the total time derivative of F,
Gðx;vÞ ¼ _FðxÞ ¼ kv

ðjxj2 þ r2
c Þ

3=2 �
3kðv � xÞx
ðjxj2 þ r2

c Þ
5=2 : ð15Þ
The Hermite algorithm is a predictor–corrector method, with the predictor given by:
xp
i ¼ xi þ hvi þ

h2

2
ai þ

h3

6
Ji; ð16Þ

vp
i ¼ vi þ hai þ

h2

2
Ji; ð17Þ
where h is the time step (at this point assumed to be the same for all particles).
We now write Taylor series for the positions, velocities, and all derivatives up to jerk. Note that the subscript ‘‘0” refers to

a quantity at the start of a time step, and ‘‘1” the end of a time step.
x1;i ¼ x0;i þ v0;ihþ
1
2

a0;ih
2 þ 1

6
J0;ih

3 þ 1
24

S0;ih
4 þ 1

120
C0;ih

5
; ð18Þ

v1;i ¼ v0;i þ a0;ihþ
1
2

J0;ih
2 þ 1

6
S0;ih

3 þ 1
24

C0;ih
4
; ð19Þ

a1;i ¼ a0;i þ J0;ihþ
1
2

S0;ih
2 þ 1

6
C0;ih

3
; ð20Þ

J1;i ¼ J0;i þ S0;ihþ
1
2

C0;ih
2
; ð21Þ



8720 G.I. Bell et al. / Journal of Computational Physics 227 (2008) 8714–8735
where S0;i and C0;i are the second and third time derivatives of the acceleration at time t ¼ 0, called the snap and crackle. We
are approximating the solution using an interpolating polynomial in h with derivatives through order five specified at t ¼ 0.
This process in general is known as Hermite interpolation, from which this algorithm derives its name. We can now solve
Eqs. (20) and (21) for S0;i and C0;i in terms of the acceleration and jerk, giving
S0;i ¼ �2
3ða0;i � a1;iÞ þ hð2J0;i þ J1;iÞ

h2 ; ð22Þ

C0;i ¼ 6
2ða0;i � a1;iÞ þ hðJ0;i þ J1;iÞ

h3 : ð23Þ
The corrector then applies these quantities in the Taylor series introduced above,
xiðt þ hÞ ¼ xp
i þ

h4

24
S0;i þ

h5

120
C0;i; ð24Þ

viðt þ hÞ ¼ vp
i þ

h3

6
S0;i þ

h4

24
C0;i: ð25Þ
This algorithm is self-starting, and proceeds by the following steps:

1. Calculate the initial acceleration a0;i and jerk J0;i using Eqs. (13) and (14). This step is only executed once, for the first time
step.

2. Calculate new position and velocities using the predictors Eqs. (16) and (17).
3. Calculate the new acceleration a1;i and jerk J1;i using Eqs. (13) and (14) on the predicted positions and velocities.
4. Calculate the snap and crackle using Eqs. (22) and (23).
5. Advance to the next time step by using the correctors Eqs. (24) and (25).
6. Determine hi, the next time step for particle i (different for each particle).
7. Set all a0;i ¼ a1;i, J0;i ¼ J1;i, and return to Step 2.

Note that the predictors calculate xi up to Oðh4Þ and vi up to Oðh3Þ. When there are no external fields present, the accel-
eration and jerk of Eqs. (13) and (14) have errors Oðh4Þ and Oðh3Þ, respectively, so that the snap and crackle in Eqs. (22) and
(23) are determined up to Oðh2Þ and OðhÞ. The corrector thus has single step error Oðh5Þ, and the method overall is 4th-order.
However when external fields are present, the acceleration Eq. (13) depends on the velocity, not just the positions of the
particles, and so it is determined up to Oðh3Þ. This means that the crackle error is Oð1Þ, which breaks the 4th-order accuracy
of the corrector. If implemented as stated, the new algorithm with B 6¼ 0 will be 3rd-order.

Breaking of 4th-order accuracy is due to the linear term qivi � B, and it can be restored by the following technique: First,
we divide ai, Ji, Si and Ci into two pieces, the first due to the Lorentz force, and the second due to particle interaction. The
predictor and corrector formulas now have twice as many terms to be added. As shown in Appendix B, 4th-order accuracy
of the scheme can be retained with two modifications of the algorithm:

	 In Step 3: Calculate the acceleration and jerk with the fields evaluated at the predicted values of position and velocity.
	 In Step 5: For the part of the solution corresponding to the fields only, change the coefficient in Eq. (24) from 1/120 to 1/60,

and in Eq. (25) from 1/24 to 5/72.

To resolve close collisions, the time step must be reduced. It is much more efficient if we only reduce the time step for
strongly interacting particles. To do so we introduce a hierarchy of time steps
hðnÞ ¼ h
1
2

� �n�1

; n ¼ 1;2; . . . 15;
where h is the base time step. We have found that 15 time step levels is generally sufficient. The algorithm proceeds by
updating the particles with the smallest current time.

To determine the next time step for particle i, Aarseth [1] suggests
hi ¼ g
ja1;ijjS1;ij þ jJ1;ij

2

jJ1;ijjC1;ij þ jS1;ij2

 !1=2

; ð26Þ
where g is a dimensionless constant. Aarseth has found that g ¼ 0:03 gives energy conservation to one part in 104 in the ab-
sence of close encounters [1]. Numerical experiments with two particles and rc ¼ 0 have found that Eq. (26) does not always
reduce the stepsize fast enough during strong collisions.

A formula for the next time step for particle i that works even when rc ¼ 0 is
hi ¼
1
C

min
vj 6¼vi

j

jxijj
jvijj

; ð27Þ
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where C is the minimum number of time steps before two particles can coincide. We have found that a choice of C ¼ 10
works well. For the general n-body problem for one time step over all particles, Eq. (27) requires OðN2Þ divisions, while
Eq. (26) over all particles scales as OðNÞ. However, for Eq. (27) we only recalculate the time step for each electron, and there
are only a small number of ions in the minimization. In order to fully resolve all collisions, we use rc ¼ 0, with the next time
step level selected using Eq. (27).

4. The binary Coulomb collision (BCC) algorithm

The idea for the BCC algorithm comes from the observation that the vast majority of electron–ion collisions are weak and
easy to calculate, with only the occasional strong collision requiring more numerical effort. We can create an algorithm that
solves Eq. (9) by summing exact 2-body collision solutions over each pair of interacting particles. One benefit of this tech-
nique is that it enables us to take a constant time step.

We cannot solve the 2-body problem exactly in the presence of arbitrary electric and magnetic fields, so the BCC algo-
rithm assumes B ¼ E ¼ 0. Particle motion due to these external fields is handled using an operator splitting technique, alter-
nately applying binary Coulomb collision and field pushes. It is not practical to use this operator splitting technique with the
Hermite algorithm, because the time step for each particle depends on information from the previous time step. Hence, the
insertion of a new operator that changes particle positions or velocities will break the time step calculation of the Hermite
algorithm.

The BCC algorithm is defined by the following time advance formulas:
xiðt þ hÞ ¼ xi þ hvi|{z}
drift

þ l
mi

Xvj 6¼vi

j

dxij; ð28Þ

viðt þ hÞ ¼ vi þ
l
mi

Xvj 6¼vi

j

dvij; ð29Þ
where l ¼ memion=ðme þmionÞ is the reduced mass of the electron–ion pair. The terms dxij and dvij come from the exact solu-
tion to the two-body problem between particles i and j, and are defined by
dxij ¼ ½eijðhÞ � eijð0Þ
 � h _eijð0Þ; ð30Þ
dvij ¼ ½ _eijðhÞ � _eijð0Þ
: ð31Þ
Here eijðtÞ is the exact solution at time t of the reduced 2-body problem for the interaction of particles i and j, and t ¼ 0 cor-
responds to the initial condition at the beginning of the time step.
l€eij ¼ �FðeijÞ with initial conditions ð32Þ
eijð0Þ ¼ xijð0Þ ¼ xið0Þ � xjð0Þ and
_eijð0Þ ¼ _xijð0Þ ¼ _xið0Þ � _xjð0Þ:
For a two-particle system, Eqs. (28) and (29) are one way to write the conversion formulas between motion of a single re-
duced particle of mass l under a central force back to the original two-particle system. For this two-particle system, the BCC
algorithm gives the exact solution, for any time step. For a system of more than two particles, the BCC algorithm gives an
approximation to the solution. Details on solving the 2-body problem exactly can be found in Appendix B.

When i < j, dxij represents the correction to the motion of ion i in response to electron j. It is computationally expensive to
calculate this, and we do not want to repeat this work when calculating dxji, the correction to the motion of electron j in
response to ion i. As a consequence of momentum conservation, dxij ¼ �dxji and dvij ¼ �dvji, in practice we compute these
deviations once for i < j and add them to ion i and subtract them from electron j.

If we perform a Taylor expansion of eijðtÞ and _eijðtÞ around t ¼ 0, and substitute back into Eqs. (30) and (31), we obtain
dxij ¼
h2

2
€eijð0Þ þ

h3

6
e
���

ijð0Þ þ Oðh4Þ: ð33Þ
However, €eijð0Þ ¼ �Fðxijð0ÞÞ=l, and e
���

ijð0Þ ¼ �Gðxijð0Þ; vijð0ÞÞ=l, where Gðx; vÞ is the exact time derivative of F as defined in
Eq. (15). Substitution into the time advance equations Eqs. (28) and (29) gives exactly the Hermite predictor, Eqs. (16)
and (17), up to order Oðh4Þ in xi and Oðh3Þ in vi. This proves that when E ¼ B ¼ 0, the BCC algorithm converges to the solution
to Eq. (9) as h! 0, and is equivalent to the Hermite predictor as h! 0. Moreover, because the single step error is Oðh3Þ, the
BCC algorithm is a 2nd-order method.

This shows that the BCC algorithm will converge more slowly than the Hermite algorithm, and indeed in general n-body
problems where many particles are separated by similar distances, it is inferior. In our simulations, most of the electrons are
relatively far from any ion, with only the occasional close collision.

Solving the two-body problem exactly for all electron–ion pairs is computationally expensive, and for many pairs the
interaction is very weak. We estimate the distance of closest approach during the next time step, assuming the two particles



8722 G.I. Bell et al. / Journal of Computational Physics 227 (2008) 8714–8735
travel in straight lines. If the ratio of the maximum potential energy to starting kinetic energy is less than some threshold, we
use the Hermite predictor,
dxij ffi �
1
l

h2

2
FðxijÞ þ

h3

6
Gðxij;vijÞ

" #
; ð34Þ

dvij ffi �
1
l

h2

2
Gðxij; vijÞ

" #
; with rc ¼ 0: ð35Þ
In practice 70–90% of all collisions may be calculated using this fast technique.

5. Operator splitting and code parallelization

In the BCC algorithm, the interaction of particles with fields is handled using a standard Boris push algorithm [5], which
proceeds using the following symmetric steps:

1. Drift(h=2).
2. E-kick(h=2).
3. B-kick(h).
4. E-kick(h=2).
5. Drift(h=2).

The B-kick step is a simple 2nd-order scheme which exactly conserves particle kinetic energy. The drifts only modify par-
ticle locations, while the E and B kicks only modify particle velocity.

Since the Boris push and BCC algorithms are both 2nd-order, one can simply apply them alternately. However such a
scheme is only 1st-order overall. One way to retain 2nd-order accuracy is to preserve the symmetry of the algorithm, and
since the BCC algorithm takes the greatest amount of time, it is best to place it in the middle of a symmetric scheme:

1. E-kick(h=2).
2. B-kick(h=2).
3. BCC(h).
4. B-kick(h=2).
5. E-kick(h=2).

Note that in Step 3, the BCC algorithm Eqs. (28) and (29) includes the particle drift.
Fig. 2 shows convergence rates for the Hermite algorithm compared with the BCC with symmetrized Boris push. We solve

the 3-body problem in 2D in the presence of a constant magnetic field. The vertical axis shows the relative change in total
energy, which is zero for the exact solution. In problem #1, the three bodies are separated by the same distance, and we see
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that the Hermite algorithm always has a smaller error. In problem #2, two of the bodies are 100 times closer together com-
pared to the third, and the accuracy of the algorithms is reversed (for this range of time steps). Fig. 2 shows that the BCC
algorithm tolerates a larger time step, provided only one pair of particles is interacting strongly.

The Hermite algorithm is difficult to parallelize because of the hierarchy of time steps, and we have only run it using the
serial version of VORPAL. We have found that the algorithm is more efficient if the relatively heavy gold ions are prevented
from dropping down in time step, and the algorithm suffers no loss of accuracy.

The BCC algorithm parallelizes easily because of the constant time step, and pairwise interaction formula. The Boris push
parallelizes trivially because it only involves one particle and the local field. At the beginning of each binary collision time
step, the processors share the position and velocity of all ions. Each processor is then able to calculate the contributions dxij

and dvij for collisions between any ion and any electron in its domain. At the end of the BCC update the processors share ion
kicks, which are summed over each ion in the processor’s domain.

Fig. 3 shows parallel timing runs for the same problem run on different numbers of processors. The cluster used has 24
dual-core, dual-processor nodes, made up of 1.8 GHz Opteron processors with 4 GB of memory, interconnected using GB
ethernet. Each run uses 8 equally-separated ions, and for this reason parallelization is essentially perfect (doubling of speed
with each doubling of the number of processors) up to eight processors. Beyond this some domains contain no ions, and
these finish more quickly due to a higher percentage of weak collisions. The total time in this case is controlled by the pro-
cessors which contain ions. Here we are using the automatic domain decomposition in VORPAL, which results in equal size
domains. We can improve the parallelization by moving into the frame of reference of the ions and adjusting the domain
sizes so that the domains containing ions are smaller. The third curve in Fig. 3 shows the effect of this first change.

6. Diffusive effects and the resolution of small impact parameters

Analogous to the frictional force, Eq. (8), the momentum diffusion tensor can be calculated as [8,10]
dab ¼ 4pnek2
Z

K0
jvrelj2dab � vavb

jvrelj3
f ðveÞd3ve: ð36Þ
Note that qmin in the Coulomb logarithm K0 varies with the relative speed of the ion and electron, but it is often taken as a
constant by using the average value of j vj2. In this case the Coulomb logarithm is often taken outside the integrals in Eqs. (8)
and (36). It is more correct to keep K0 inside the integral, but any differences are small in the limit that K0 � 1.

We have simulated the friction force using the parameters shown in Table 1, which are relevant to the proposed RHIC
electron cooler. We simulate a small portion of the beam, a cube approximately L � 1 mm on a side. The electron density
in this domain is assumed constant, and we impose periodic boundary conditions along all three axes x, y and z. These sim-
ulations typically use eight equidistant ions.

The run time for this algorithm scales as NeNion, and since we are free to choose the number of ions, this suggests we
should use as few as possible. For one ion we get a single number for the friction force, the advantage of using eight ions
is that we get eight estimates of the friction, and the standard deviation can be used to estimate the error, as shown in Fig. 4.

The algorithms we use are specialized to the free-space inverse square law of the Coulomb force, so we cannot use an
Ewald potential or other modified force laws to impose periodicity on the electrostatic fields of the charged particles. Hence,



Table 1
RHIC cooling section parameters (as of 2006)

Parameter Frame Value

Electron density, ne Beam 9:50� 1013 e�=m3

RMS e� x; y-velocity, Dx , Dy Beam 2:8� 105 m=s
RMS e� z-velocity, Dz Beam 9:0� 104 m=s
Interaction time, s Beam 2:47� 10�9 s
90� collision impact parameter, qmin Beam 2:2� 10�7 m
Mean Coulomb log value, K0 Beam 8.2
Relativistic c Lab 108
Relativistic b ¼ v=c Lab 0.99957
Undulator length Lab 80 m
Undulator strength Lab 10 G or 1:0� 10�3 Tesla
Undulator wavelength, k Lab 8 cm
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we use the following numerical technique to eliminate bulk electric forces on ions that are not in the precise center of the
simulation domain. The position of each electron, relative to an ion, is cyclically shifted before the force is evaluated in Eq.
(11) so that ion sees an equal number of electrons on each side and is, effectively, in the center of a cubic distribution of
electrons.

For example, if any coordinate component xij > L=2, then the value xij � L is used in Eq. (11) instead of xij. On the other
hand, if xij < �L=2, then xij þ L is used. Tests have shown that this simple and numerically efficient technique yields the same
simulated friction force as is obtained when working in the rest frame of a single ion which remains in the center of a cubic
domain while electrons stream past. Additional evidence can be found in the plots of friction versus the box size L, as in
Fig. 7. If there was some error associated with the cyclic shifting technique, one would expect it to be greater the smaller
the box size, yet such an effect is not seen.

The diffusive kicks on the ion cause it to perform a random walk, with the resulting RMS velocity spread increasing as
ffiffi
t
p

.
Fig. 5 shows a comparison between the diffusion predicted by Eq. (36) and VORPAL simulation results. For the finite inter-
action time of the RHIC cooling section, the friction force is small compared to the diffusive velocity kicks.

For the electron density of the RHIC cooling section, there are of order 50,000 electrons in a domain L ¼ 0:8 mm on a side.
Passage through the 80 m RHIC cooler takes about 2.5 ns (in the beam-frame), and diffusion dominates over friction for this
short time interval. To obtain a statistically significant friction force, we must do hundreds of runs and average the resulting
ion velocity changes. Alternatively, we can divide both the charge and mass of each electron by an integer Nm, and use Nm

times more electrons. In this manner we can do a single large VORPAL run and take advantage of the parallelization; other-
wise, one would have to do many small simulations using a task farming approach, which is much less convenient. Note,
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however, that according to the analysis in Appendix A, averaging many runs, or splitting each electron into Nm particles, re-
duces the cutoff impact parameter resolved by the simulation qc, which tends to increase the friction force.

To reduce the diffusion in numerical simulations, we note that the frictional force in Eq. (8) is independent of the sign of
the charges. In VORPAL, we replace half the electrons by positrons with identical initial positions and velocities. The field
seen by the positrons is set to the negative of the field seen by the electrons, so that in the absence of ions, the electrons
and positrons would move identically. Any diffusive kick given to an ion by an electron will be approximately canceled
by a negative kick from its paired positron, greatly reducing the diffusion. This trick can be used whenever Eq. (8) is valid,
which requires that the Coulomb logarithm K0 � 1 (see Appendix A).

Fig. 6 shows the friction force of Eq. (8) calculated using K1, with the x-axis being the upper limit of integration in q. All
parameters used are for the RHIC cooler of Table 1. The curve shows that 8.3% of the total friction force is due to impact
parameters less than qmin. In Appendix A, we show how to calculate the cutoff impact parameter that can be resolved in fi-
nite time, qc. In the numerical simulations, q c � 2:4qmin ¼ 5:3� 10�7 m, so Fig. 6 suggests that physical friction force as sim-
ulated by VORPAL will be 17% lower than predicted by the standard Coulomb logarithm.

7. Finite time and box size effects

Earlier we saw that a careful treatment of small impact parameter collisions gave the modified Coulomb logarithm K1 in
Eq. (7). Another effect we now wish to take into account is that all collisions occur during a finite time interval. This has rel-
atively little effect on small impact parameter collisions, but becomes significant for large impact parameter collisions. We
will now see that these finite collision time effects result in an additional modification to the Coulomb logarithm.

In the standard perturbative derivation of the friction force [8], the force due to each electron is integrated over an infi-
nitely long trajectory. However, the integrals can be done exactly for finite length trajectories (i.e. for a finite time), if all col-
lisions are assumed to be symmetric. A length scale which emerges as significant is half the length of the collision trajectory,
d ¼j vrel j s=2. For finite-time, symmetric collisions with d� qmin, the friction force obtained is Eq. (7), with the Coulomb log-
arithm K replaced by
K2ðqmax;qmin;qc;dÞ ¼
1
2

ln
q2

max þ q2
min

q2
min þ q2

c

� �
q2

c þ d2

q2
max þ d2

 !" #
: ð37Þ
Various limiting cases reduce to previous results. For example, if d� qmax, we recover K1 of Eq. (7), and if we also have
qmax � qmin and q c ¼ 0 we recover K0 of Eq. (1). If qmax � d and qc ¼ 0, then K2 reduces to K0 where qmax is replaced by
d, so that the maximum impact parameter is controlled by the interaction time s.

Since the numerical model approaches the collisions from first principles, one might assume that it is free of artificial cut-
offs in impact parameter. However, this is not the case. There is an upper limit imposed by the size of the domain, L. The
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length of an electron trajectory can be no longer than
ffiffiffi
3
p

L, and numerically for the electron parameters in Table 1 we find the
mean trajectory length is 0:86L. This is simply a geometric property of an electron placed randomly in a box, with a random
velocity. In the Coulomb logarithm K2 of Eq. (37), we should use half this trajectory length for qmax ¼ 0:43L and
d ¼ minfj vrel j s=2;qmaxg. In the physical RHIC collider, the maximum impact parameter is limited by the size of the beam,
as well as the finite interaction time, and the beam is large enough that the latter determines qmax ¼j vrel j s=2.

Fig. 7 shows a comparison between friction predicted by Eq. (8) and VORPAL simulations using various box sizes. Here the
theoretical curve uses the Coulomb logarithm Eq. (37). In calculating rfinite, it is important to replace the trajectory length
hmrelis in Eq. (A.5) by 0.86 L when the latter is smaller, so that rfinite depends on L.

In Fig. 8 we compare the longitudinal and transverse friction for an ion moving at velocity 3:0� 105 m/sec. The angle
(x-axis) refers to the angle of the gold ion’s velocity, where 0� is longitudinal, and 90� is transverse.

8. Effects of adding an undulator magnet

A helical undulating field in the lab frame with wavelength k in cylindrical coordinates is given by [18],
Blabðr; h; zÞ ¼ 2B0 I01ð‘rÞ cosðh� ‘zÞr̂ þ I1ð‘rÞ sinðh� ‘zÞ ẑ� ĥ
‘r

 !" #
;

where ‘ ¼ 2p=k and I1 is a modified Bessel function. When Lorentz transformed to the beam-frame, assuming r � k, to lead-
ing order we have only time-dependent electric and magnetic fields, which can be written in Cartesian coordinates as:
Ebeamðx; y; zÞ ¼ E0½�ðsin XtÞx̂þ ðcos XtÞŷ
;
Bbeamðx; y; zÞ ¼ cB0½ðcos XtÞx̂þ ðsin XtÞŷ
;
where E0 ¼ cbcB0 and X ¼ cbc‘ ¼ 2pcbc=k.
The undulator field causes the electrons to undergo transverse oscillations in the beam-frame [19] of magnitude

r0 ¼ ek2B0=ð4p2mecbcÞ ¼ 8:8� 10�7 m (for B0 ¼ 1:0� 10�3 Tesla). The Coulomb collisions with impact parameter less than
r0 will no longer occur, and if the relative velocities of the electrons are not altered significantly enough to affect the velocity
term in Eq. (8), the friction should be reduced by a factor of
f ¼ K2ðqmax;qmin;qc; dÞ
K2ðqmax;qmin;jr0;dÞ

ffi lnðqmax=qcÞ
lnðqmax=jr0Þ

; ð38Þ
where j P 1 is a constant. The value of j ¼ 1 has been suggested previously [2,3,11,16].
In Eq. (38) we use qmax ¼ 0:43L, q c ¼ 2:4qmin and j ¼ 2. This gives a factor f of 1.23 for B0 ¼ 1:0� 10�3 Tesla and 1.77 for

B0 ¼ 5:0� 10�3 Tesla. Figs. 9 and 10 show the longitudinal and transverse friction for these two field strengths for VORPAL
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runs and theoretical calculations. The theoretical curves for B ¼ 0 use the Coulomb logarithm Eq. (37), for B > 0 we simply
reduce the B ¼ 0 curve by the factor f. A value of j ¼ 2 produces a good match with the VORPAL simulations. It is reasonable
to take j P 1, but we can find no other physical argument for the value of j, and it may differ in other parameter regimes. It
has been shown with BETACOOL simulations that this reduction in the friction force, and the associated reduction in electron
recombination, can be used to find an optimal undulator field strength [17]. The impact of general fields on the friction force
will be explored in much more detail in a future paper.
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9. Conclusions

We have presented two algorithms for simulating the dynamical friction force on ions due to a co-propagating beam of
electrons. The Hermite algorithm is a 4th-order method which works in the case of a constant magnetic field. The binary
Coulomb collision (BCC) algorithm is 2nd-order and can be used in the presence of rapidly varying and arbitrarily strong
electric and magnetic fields. Despite the lower order of the BCC algorithm, it tolerates a much larger time step compared
to the Hermite algorithm, and in general one chooses the time step according to the rate of change of any external fields.
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We have considered physical parameters of the proposed RHIC cooling section. Compared to existing electron cooling
facilities, these parameters are characterized by a relatively low electron density and short interaction time. One must care-
fully consider finite time effects to correctly interpret any simulation of the friction force in this parameter regime. We have
done so by reviewing in detail the standard perturbative calculation that results in the Coulomb logarithm, with carefully
separation of the roles of qmin, qc and qmax. In particular, we have shown that finite time effects can strongly constrain
qmax from above and qc from below, and naive application of the standard Coulomb logarithm can significantly over-estimate
the magnitude of the friction force. We have shown that theoretical predictions closely match VORPAL simulation results
when we use a modified Coulomb logarithm K2, Eq. (37) in Eq. (8).

We have simulated the proposed RHIC cooling section, including a 10 G, 8 cm wavelength helical undulator. We have
compared the friction obtained with the undulator to the friction when no fields are present. Theoretical estimates that fric-
tion will be reduced by the factor given in Eq. (38) have been confirmed by the BCC algorithm. In short, the effective value of
qc is j times the usual oscillation amplitude for electrons in an undulator magnet, where j P 1 is a constant depending on
the simulation parameters. A value of j ¼ 2 works well for the RHIC parameters.
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Appendix A. Statistical limitations on small impact parameters

For a spatially uniform electron density ne, the typical inter-particle separation is a ¼ ð4pne=3Þ�1=3, sometimes called the
Wigner-Seitz radius [29,30]. We consider the probability that the distance between a single ion and any number of electrons
will become less than q in a time s, for values of q� a. We assume unperturbed ion motion with velocity
vion ¼ vion;xx̂þ v ion;zẑ, and consider times short compared to a plasma period, xpes < 2p, so ne remains approximately con-
stant in time. Following particle accelerator conventions, the longitudinal ẑ axis is aligned with the motion of the electron
and ion beams, while the x̂ and ŷ axes span the transverse plane. The transverse electron temperature typically differs from
the longitudinal temperature, but we can reasonably assume cylindrical symmetry in velocity space and, hence, align the x̂
axis with the transverse component of the ion velocity. This is why our assumed ion velocity vector has no y component.

For cold electrons and vions� q, the ion sweeps out an approximately cylindrical volume, Vcold � v ionspq2, where
vion ¼j v ion j¼ ðv2

ion;x þ v2
ion;zÞ

1=2. The probability that k electrons will be found in this volume is governed by Poisson statistics,
with the following probability function [12]:
fk ¼
kk

k!
e�k; ðA:1Þ
where k ¼ neVcold is the mean value.
It is convenient to work in the Galilean frame where the ion is stationary. We assume without loss of generality that the

ion lies at the origin, and we consider a sphere of radius q that is centered on the origin. We need to know the volume of
space that contains, at time t ¼ 0, all electrons with trajectories that will lie inside or intersect the sphere around the ion
during the time interval 0 < t < s. For cold electrons, this volume is obtained by sweeping the sphere along a line of length
vions, with no dependence on the direction of the velocity vector. The resulting volume is approximately equal to Vcold cal-
culated above.

For a finite electron temperature, more electrons will enter or pass through the box in time s, which means they will also
have a distance of closest approach that is 6 q. To include these electrons correctly in our volume calculation, we assume
they all follow straight line trajectories in our Galilean frame with relative velocity vrel ¼ ð�vion;x þ ve;x; ve;y;�v ion;z þ ve;zÞ.
The finite-temperature volume is then found by integrating Vcold over the thermal electron distribution
f ðveÞ ¼
1

ð2pÞ3=2DxDyDz

exp � v2
x

2D2
x

�
v2

y

2D2
y

� v2
z

2D2
z

 !
; ðA:2Þ
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where Da is the rms value of electron velocity component va. This is equivalent to replacing v ion in the cold formula with
hvreli, where vrel ¼j vrel j:
hvreliðDx;Dy;DzÞ ¼
Z 1

�1
d3vef ðveÞ j vrel j; ðA:3Þ
yielding Vwarm � hvrelispq2.
Just as is the case with Eq. (8), the integral in Eq. (A.3) must in general be done numerically. However, it is useful to have

even an approximate analytical expression, so we consider the special case of an isotropic electron temperature, Da ¼ D for
all a, and an ion moving only longitudinally, vion;x ¼ 0 and vion;z ¼ vion. In this limit, Eq. (A.3) can be evaluated analytically to
obtain:
hvreli ¼ vion 1þ D2

v2
ion

 !
erf

vionffiffiffi
2
p

D

� �
þ

ffiffiffiffi
2
p

r
vion

D
exp � v2

ion

2D2

� �" #
; ðA:4Þ
where erfðuÞ is the usual error function, ranging from zero to unity as u ranges from zero to1. As expected, hvreli ! vion as
D! 0. Also, hvreli ! ð2=pÞ1=2D as vion ! 0. For the special case of vion ¼ D, vrel � 1:8vion.

From Poisson statistics, we know that the ‘‘mean” k ¼ nehvrelispq2 is the expectation value for the number of electrons to
be found in the volume V warm at t ¼ 0. Given the above analysis, and the assumption of weakly perturbed orbits, we know
that k is equivalently the expectation value for the number of electron trajectories with impact parameters 6 q.

A.1. Smallest resolved impact parameter in a finite time

Fig. 1 shows the contributions to the longitudinal friction force, as a function of impact parameter, using Eq. (4), with dvk
calculated alternately (a) in the perturbative limit, and (b) analytically for two-body motion. In fact, each scattering event
also gives the ion a small transverse velocity kick, but it is implicitly assumed that electron trajectories come from all angles,
fully sampling both poloidal and azimuthal angles, so that the transverse velocity kicks average exactly to zero. Any trans-
verse ion dynamics (in the absence of external electric or magnetic fields) is modeled as diffusion.

Because the number of collisions for a given range of impact parameters scales quadratically with impact parameter,
there are generally very few scattering events for q  qmin. In a physical system, with finite electron density ne and finite
interaction time s, there will be an impact parameter qc, for which it is not valid to assume the occurrence of many electron
trajectories that fully sample the range of scattering angles. The correct Coulomb logarithm to use when qc > 0 is K1 in Eq.
(7), or K2 of Eq. (37) which includes finite time effects as well.

We calculate qc, using Poisson statistics, under the assumption that Nc electron–ion collisions with impact parameters
6 q are required to adequately sample the poloidal and azimuthal scattering angles. Following the discussion at the begin-
ning of this appendix, we simply equate Nc with the ‘‘mean” k, then solve for q to obtain:
qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nc

hvrelispne

s
: ðA:5Þ
For our RHIC parameters, we find good agreement with simulations, if we choose Nc � 120. This is a reasonable result, but
may not be optimal for different parameters.

As is discussed in the body of this paper, an accurate simulation of the friction force requires many realizations of the
same simulation parameters. One then averages these results and can use the Central Limit Theorem to estimate the uncer-
tainty in this averaged friction force. However, this process can result in a large increase of the number of trajectories with
small impact parameters. As a result, the averaging process (necessary to reduce error bars) also better resolves small impact
parameters, which artificially reduces the value of qc and, hence, increases the friction force. To account for this effect and
correctly interpret simulation results, one must let Nc ! Nc=Ntraj, where Ntraj is the number of numerical trajectories used to
represent each physical trajectory for the purpose of averaging.

For example, this is used to accurately interpret simulation results in Fig. 7. In all the numerical simulations (except when
modeling the diffusion) we split each electron into Nm ¼ 267 lighter electrons with the same charge to mass ratio, as de-
scribed in Section 6. This effectively increases ne by a factor of Nm, and together with eight trajectories gives
qc ¼ 5:3� 10�7 m. It is also important in the simulations to have a box size L that is large enough (a value of 8:0� 10�4

m is used in all cases), because otherwise we will truncate some electrons that would have collided with an ion with a small
impact parameter, which artificially reduces hvreli and by Eq. (A.5) increases qc.

A.2. Validity criterion for linear plasma approximation

In a linear or weakly-coupled plasma, binary Coulomb collisions dominate over 3-body and higher n-body collisions. We
define a 3-body collision to mean that two electrons are simultaneously within q of the ion, or closer. By ‘‘simultaneous”, we
mean here that the two events occur during the brief time interval s  q=hvreli. In other words, a 3-body collision occurs
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when two binary collisions happen close enough to each other that they cannot be treated as separate events. Hence, the
expectation value for the number of 3-body collisions can be written as
Table B
Summa

Force
Orbit ty
Eccentr
Eccentr
Kepler
k3bdy �
4p
3

q3ne ðA:6Þ

The probability that an ion will scatter two (or more) electrons, during a time interval short enough to violate the binary
collision approximation, is given by
PP2 ¼ 1� P0 � P1 ¼ 1� e�k3bdy � k3bdye�k3bdy : ðA:7Þ
For k3bdy � 1, one obtains PP2 � k2
3bdy=2� 1. This probability is order unity when k3bdy is order unity, which by definition

occurs when q equals the Wigner-Seitz radius a. As long as the condition qmin � a is satisfied, we know that scattering
events with impact parameter q � a are very small angle and can be treated perturbatively, which means there’s no coupling
between nearby collisions and so the binary collision approximation remains valid. The condition qmin � a is equivalent to
requiring that K� 1.

Appendix B. Binary Coulomb collision (BCC) algorithm details

In the BCC algorithm we solve the classical two-body, central-force problem in 3D, Eq. (32). This is a classical problem in
celestial mechanics [20] and the solution is well known for attractive bodies. In our case we may have particles that repel,
which is usually not considered. Therefore, we give some detail for both cases here (see Appendix Table B.1).

In this section we use x for the 3D position of the reduced particle Eq. (32), rather than eij. The Lagrangian for the reduced
one-particle system under a central force is
L ¼ 1
2
lj _xj2 � VðjxjÞ; where VðrÞ ¼ � k

r
:

By conservation of angular momentum, the motion lies in the plane defined by the initial position x0 and velocity _x0 ¼ v0. To
solve exactly, we proceed using the following steps:

(1) Find an orthonormal coordinate system fn1;n2;n3g such that the particle motion lies in the n1 � n2 plane.
(2) Convert the 2D problem to polar coordinates.
(3) Solve this 2-body problem in 2D.
(4) Convert deviations from Polar to 2D Cartesian coordinates in the n1 � n2 plane.
(5) Convert the coordinate and velocity deviations back to 3D.
Step 1: We obtain the orthonormal coordinate system by
n1 ¼
x0

jx0j
; ðB:1Þ

n2 ¼
½x0 � v0
 � x0

jx0 � v0jjx0j
¼ n3 � n1; ðB:2Þ

n3 ¼
x0 � v0

jx0 � v0j
¼ n1 � n2: ðB:3Þ
If v0 ¼ 0, or v0 is parallel to x0, the motion is 1-dimensional, but n2 and n3 are undefined. In this case n2 and n3 are not
needed to calculate the motion, but we can choose n2 as any vector perpendicular to n1, and n3 ¼ n1 � n2.

Step 2: The initial position of the particle is aligned along the n1-axis, so in polar coordinates its initial position and veloc-
ity are:
r0 ¼ jx0j; ðB:4Þ
h0 ¼ 0; ðB:5Þ
_r0 ¼ v0 � n1 ¼

x0 � v0

jx0j
; ðB:6Þ

_h0 ¼
v0 � n2

jx0j
¼ jx0 � v0j
jx0j2

: ðB:7Þ
.1
ry of orbit types

k > 0; E < 0 k > 0; E > 0 k < 0; E > 0

Attractive Attractive Repulsive
pe Elliptic Hyperbolic Hyperbolic
icity 0 < � < 1 �P 1 �P 1
ic anomaly w r=qmin ¼ 1� � cos w r=qmin ¼ � cosh w� 1 r=qmin ¼ � cosh wþ 1
equation xh ¼ w� � sin w xh ¼ � sinh w� w xh ¼ � sinh wþ w
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Step 3: We now have a single particle of mass l under a central force with initial conditions specified by Eqs. (B.4)–(B.7).
Let ðrðtÞ; hðtÞÞ be the exact solution to this 2-body problem, when we refer to r or h (at an unspecified time) it will be
assumed to be at the final time t ¼ h. What we really need for Eqs. (30) and (31) is the change in position and velocity,
and it is more efficient to calculate this difference directly rather than subtracting the nearly equal initial and final values,

Dr ¼ r � r0; ðB:8Þ
Dh ¼ h; ðB:9Þ
D_r ¼ _r � _r0; ðB:10Þ
D _h ¼ _h� _h0: ðB:11Þ

There are two constants to the motion, the angular momentum ‘ and total energy E

2
‘ ¼ lr _h; ðB:12Þ

E ¼ l
2
ð _r2 þ r2 _h2Þ þ VðrÞ ¼ 1

2
l _r2 þ ‘2

2lr2 �
k
r
: ðB:13Þ
We note that if E > 0, the orbit is hyperbolic, and q ¼j x0 � v0 j = j v0 j¼j ‘ j ð2lðEþ k=rÞÞ�1=2 is the classical impact
parameter.

We define two dimensionless constants: g – the ratio of the semi-minor to the semi-major axis of the orbit, and � – the
eccentricity:
g ¼

ffiffiffiffiffiffiffiffi
2jEj
l

s
‘

k

����
����; ðB:14Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E‘2

lk2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
hyperbolic; E > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

elliptical; E < 0:

(
ðB:15Þ
The orbit types of circular (E ¼ �lk2
=2‘2, � ¼ 0) and parabolic (E ¼ 0, � ¼ 1) are limiting cases that do not need to be con-

sidered separately. For our simulations nearly all collisions are hyperbolic because relative velocities are large. We include
the elliptic solutions in what follows for completeness, and to handle its occasional occurrence.

We can now calculate r at the final time t ¼ h by solving Eq. (B.13) for _r and integrating, which gives
h ¼
Z r

r0

lrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lEr2 þ 2lkr � ‘2

q : ðB:16Þ
Eq. (B.16) can be solved exactly using a change of variables involving a quantity w, the ‘‘eccentric anomaly”. The substitutions
for each case are
r ¼ qminð� cosh w� sgnkÞ hyperbolic; ðB:17Þ
r ¼ qminð1� � cos wÞ elliptical; ðB:18Þ
where qmin ¼j k=ð2EÞ j is the impact parameter for a 90� collision with total energy E. The value of r0 determines w0, up to
sign. It is important to set the sign of w0 correctly. w is a time-like variable which is less than zero when _r < 0 and greater
than zero when _r > 0. Therefore, we set the sign of w0 to match the sign of _r0. Note that Dw is always positive.

w is the solution to the classical Kepler equation of the form:
xh ¼ ½� sinh w� ðsgnkÞw
ww0
hyperbolic; ðB:19Þ

xh ¼ ½w� � sin w
ww0
elliptical; ðB:20Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where x ¼ jkj=ðlq3
minÞ, or in terms of Dw ¼ w� w0,
� sinhðw0 þ DwÞ � ðsgnkÞDw ¼ xhþ � sinh w0; hyperbolic; ðB:21Þ
Dw� � sinðw0 þ DwÞ ¼ xh� � sin w0; elliptical: ðB:22Þ
Note the sign difference for the opposite-sign (k > 0) versus like-sign (k < 0) particles. The Kepler equation cannot be solved
analytically, but w can be calculated using root finding methods. In general Dw is small, and we have found a good way to
solve the Kepler equation is to use a few iterations of Newton’s method starting with an initial guess Dw ¼ 0. The Kepler
equations have only a single root, and Newton’s method converges to it provided Dw is small. For strong collisions we
can use an initial guess Dw obtained by solving the Kepler Eqs. (B.21) or (B.22) after dropping the term linear in Dw.

After Dw is determined by Eqs. (B.21) or (B.22), we substitute it back into Eqs. (B.17) or (B.18) to find Dr. This can be written
to minimize cancellation of nearly equal terms by using trigonometric angle sum formulas, to yield
Dr ¼
�qminðcosh w0ðcosh Dw� 1Þ þ sinh w0 sinh DwÞ hyperbolic;
�qminðcos w0ð1� cos DwÞ þ sin w0 sin DwÞ elliptical:

�
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We then calculate Dh using
Dh ¼
tan�1 g sinh w

��sgnk cosh w

� 	
� tan�1 g sinh w0

��sgnk cosh w0

� 	
hyperbolic;

tan�1 g sin w
cos w��

� 	
� tan�1 g sin w0

cos w0��

� 	
elliptical:

8><
>: ðB:23Þ
As an aside, by considering an entire hyperbolic orbit (w0 ! �1 and w!1), we can use Eq. (B.23) to derive the total scat-
tering angle given in Eq. (5). If DH is the total change in angle over the entire orbit we have from Eq. (B.23),
tan
DH
2

� �
¼ �ðsgnkÞg ¼ �ðsgnkÞ q

qmin
:

The scattering angle / ¼ p� DH, so that tanð/=2Þ ¼ tanðDH=2Þ�1 which gives Eq. (5).For a small time step h, Eq. (B.23) in-
volves the difference between nearly equal quantities, it may be calculated more accurately by taking the tangent of both
sides and expanding out to
tanðDhÞ ¼ g½� sinh w0ðcosh Dw� 1Þ þ ðr0=qminÞ sinh Dw

g2 sinh w0 sinh wþ ð�� sgnk cosh w0Þð�� sgnk cosh wÞ ;
in the hyperbolic case and
tanðDhÞ ¼ �g½� sin w0ðcos Dw� 1Þ � ðr0=qminÞ sin Dw

g2 sin w0 sin wþ ð�� cos w0Þð�� cos wÞ ;
in the elliptic case. We can now obtain the velocity changes D_r and D _h using conservation of energy Eq. (B.13) and angular
momentum Eq. (B.12), respectively.

Step 4: This is a standard coordinate transformation, except that we have deviations Dr, Dh, D_r and D _h rather than abso-
lute coordinates. We calculate the 2D changes to coordinate and velocity using the formulas:
Dx ¼ Dr cos Dhþ r0ðcos Dh� 1Þ; ðB:24Þ
Dy ¼ ðr0 þ DrÞ sin Dh; ðB:25Þ
D _x ¼ D_r cos Dhþ _r0ðcos Dh� 1Þ � ð _h0 þ D _hÞDy; ðB:26Þ
D _y ¼ ð_r0 þ D_rÞ sin Dhþ ð _h0 þ D _hÞDxþ D _hr0: ðB:27Þ
At this point we can calculate the quantities dx and d _x in terms of the fn1;n2;n3g basis:
dx ¼ ðDx;Dy;0Þ � hðv0 � n1; v0 � n2; 0Þ; ðB:28Þ
d _x ¼ ðD _x;D _y;0Þ: ðB:29Þ

Step 5: We now convert from the impulses from the fn1;n2;n3g basis back to the original coordinate system

dx ¼ ½Dx� hv0 � n1
n1 þ ½Dy� hv0 � n2
n2; ðB:30Þ
¼ ½Dx
n1 þ ½Dy
n2 � hv0;

dv ¼ ½D _x
n1 þ ½D _y
n2; ðB:31Þ

to be inserted into Eqs. (28) and (29).

Appendix C. Hermite algorithm details

When a constant magnetic field is present the Hermite algorithm is only 3rd-order, but we can recover 4th-order accu-
racy by changing the coefficients in the corrector. To see how to do this, we solve a problem using a force that depends lin-
early on velocity. It is easiest to do this in 1D where we do not have to worry about the cross-product v� B. Consider the
simple 1D model:
€x ¼ av ¼ a _x; ðC:1Þ
with initial conditions xð0Þ ¼ 1 and _xð0Þ ¼ a. The exact solution is simply xðtÞ ¼ eat . Let us do one step of the Hermite algo-
rithm starting from the exact values xð0Þ ¼ 0, vð0Þ ¼ a, að0Þ ¼ a2 and Jð0Þ ¼ a3. First, the predictors Eqs. (16) and (17) give us
xp
i ¼ 1þ haþ h2

2
a2 þ h3

6
a3; ðC:2Þ

vp
i ¼ aþ ha2 þ h2

2
a3; ðC:3Þ
which are correct to 3rd, and 2nd-order in h, respectively. We now obtain estimates for the acceleration and jerk at the next
time step using Eqs. (13) and (14). Here it is important to evaluate the ‘‘field” (av) at the predicted positions and velocities.
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a1;i ¼ avp
i ¼ a2 þ ha3 þ h2

2
a4; ðC:4Þ

J1;i ¼ aa1;i ¼ a3 þ ha4 þ h2

2
a5: ðC:5Þ
Note that these estimates are only correct up to Oðh2Þ, which is the root of the problem. Plugging these values into the esti-
mates for snap and crackle, Eqs. (22) and (22) gives:
S0;i ¼ a4 � ha5; ðC:6Þ
C0;i ¼ 3a5: ðC:7Þ
These equations signal a problem, because as the fourth and fifth derivatives at t ¼ 0, we need S0;i ¼ a4 þ Oðh2Þ and
C0;i ¼ a5 þ OðhÞ. If we blindly substitute these values into the corrector Eqs. (24) and (25), we will get
xiðt þ hÞ ¼ xp
i þ

h4

24
a4 � 2h5

120
a5; ðC:8Þ

viðt þ hÞ ¼ vp
i þ

h3

6
a4 � h4

24
a5: ðC:9Þ
These two equations are correct only to 4th-order, and 3rd-order, respectively, because the coefficients in front of the a5

terms should be þ1=120 and þ1=24. If we implement the Hermite algorithm in this simple way it will only be 3rd-order
accurate in h.

The good news is that this problem is easily corrected, at least when the external force depends linearly on velocity. The
first technique is to note that linear combinations of S0;i and C0;i give the terms we want, i.e.
S00;i ¼ S0;i þ h
C0;i

3
¼ �2

ða0;i � a1;iÞ þ hJ0;i

h2 ¼ a4 þ Oðh2Þ; ðC:10Þ

C00;i ¼
C0;i

3
¼ 2

2ða0;i � a1;iÞ þ hðJ0;i þ J1;iÞ
h3 ¼ a5 þ OðhÞ: ðC:11Þ
We see that these new estimates of snap and crackle have the correct orders, and if we use them in the correctors, Eqs. (24)
and (25), we will get a 4th-order scheme. Equivalently, we can use the old values of S0;i and C0;i, but choose corrector coef-
ficients a1 and a2 such that
h4

24
S0;i þ a1h5C0;i ¼

h4

24
a4 þ h5

120
a5; ðC:12Þ

h3

6
S0;i þ a2h4C0;i ¼

h3

6
a4 þ h4

24
a5; ðC:13Þ
which, using the values for S0;i and C0;i in Eqs. (C.6) and (C.7) give a1 ¼ 1=60 and a2 ¼ 5=72. Thus, for particle position and
velocity changes corresponding to the fields, the corrector becomes:
xiðt þ hÞ ¼ xp
i þ

h4

24
S0;i þ

h5

60
C0;i; ðC:14Þ

viðt þ hÞ ¼ vp
i þ

h3

6
S0;i þ

5h4

72
C0;i: ðC:15Þ
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